Citation: | DING X W, CHEN J B, XIE H P, LIANG X H, HAN L B, CHEN Y F, ZHANG H N, ZHU Z Y, ZHANG M, JIA C Y. Effects of the light intensity of LEDs on the growth and physiological characteristics of tall fescue. Pratacultural Science, 2024, 41(11): 2594-2603. DOI: 10.11829/j.issn.1001-0629.2023-0260 |
To determine the optimal conditions for cultivating high-quality lawn under suitable light intensity using an LED light source, the effects of different light intensities on the morphology, physiological characteristics and power utilization efficiency of tall fescue were studied. To this end, tall fescue variety ‘Battle 4’ was used as the test material, with light intensity treatments of 100 (L100), 150 (L150), 200 (L200), 250 (L250), 300 (L300), and 350 (L350) μmol·(m2·s)−1 under a red and blue LED light source. The results showed that when the light intensity was lower than 200 μmol·(m2·s)−1, the morphology, nutrient accumulation, and antioxidant capacity of tall fescue was significantly inhibited. As the light intensity increased, the normalized difference vegetation index (NDVI) and color of tall fescue gradually increased. In addition, root growth became stronger, which is conducive to biomass accumulation and the antioxidant capacity of tall fescue. However, when the light intensity was increased to 300 μmol·(m2·s)−1, the effect of light intensity on the growth of tall fescue was weakened. The high power utilization efficiency of using LED cultivation was significantly lower in L350 processing than that of L100, L150, and L300. Regression analysis indicated that the normalized vegetation index of tall fescue was highest at a light intensity of 291.25 μmol·(m2·s)−1 [close to 300 μmol·(m2·s)−1]. These results suggest that a light intensity of 300 μmol·(m2·s)−1 is sufficient to ensure the normal growth of tall fescue and maintain high turf quality while reducing energy consumption.
[1] |
崔佳维, 雷炳富, 刘厚诚. 光合有效辐射日总量(DLI)对植物生长发育的影响. 园艺学报, 2019, 46(9): 1670-1680.
CUI J W, LEI B F, LIU H C. Effect of daily light integral on plant growth and development. Acta Horticulturae Sinica, 2019, 46(9): 1670-1680.
|
[2] |
ZHANG J, GLENN B, UNRUH J B, KRUSE J, KENWORTHY K, ERICKSON J, ROWLAND D, TRENHOLM L. Comparative performance and daily light integral requirements of warm-season turfgrasses in different seasons. Crop Science, 2017, 57(4): 2273-2282. doi: 10.2135/cropsci2017.01.0052
|
[3] |
陆诗亮, 王彬竹, 郭旗. 基于草坪采光效率的寒地膜结构专业足球场罩棚设计研究. 低温建筑技术, 2022, 44(2): 1-6.
LU S L, WANG B Z, GUO Q. Cold area’s professional football stadium with membrane structure canopy design research based on efficiency of lawn lighting. Low Temperature Architecture Technology, 2022, 44(2): 1-6.
|
[4] |
范艺然, 刘焕, 闫征南, 李晓野, 杨延杰. 春秋分日保温被顶卷对南北向大棚内光照影响的模拟. 中国农业气象, 2021, 42(8): 676-685. doi: 10.3969/j.issn.1000-6362.2021.08.005
FAN Y R, LIU H, YAN Z N, LI X Y, YANG Y J. Simulation of influences of thermal insulation quilt top roll on the light environment in the north-south greenhouse on equinox day. Chinese Journal of Agrometeorology, 2021, 42(8): 676-685. doi: 10.3969/j.issn.1000-6362.2021.08.005
|
[5] |
德力格尔, 李媛媛. 遮荫对幼苗期紫羊茅和草地早熟禾生长与生理特性的影响. 华北农学报, 2016, 31(3): 135-140. doi: 10.7668/hbnxb.2016.03.020
Deligeer, LI Y Y. Effects of the shading on seedling growth and physical characteristics of Poa pratensis and Festuca rubra. Acta Agricultural Boreali-Sinica, 2016, 31(3): 135-140. doi: 10.7668/hbnxb.2016.03.020
|
[6] |
HLADIK P, LEWIS C. Singapore national stadium roof. International Journal of Architectural Computing, 2010, 8(3): 257-277. doi: 10.1260/1478-0771.8.3.257
|
[7] |
MA Y C, XU A, CHENG Z M. Effects of light emitting diode lights on plant growth, development and traits a Meta-analysis. Horticultural Plant Journal, 2021, 7(6): 552-564. doi: 10.1016/j.hpj.2020.05.007
|
[8] |
崔瑾, 徐志刚, 邸秀茹. LED在植物设施栽培中的应用和前景. 农业工程学报, 2008, 131(8): 249-253. doi: 10.3321/j.issn:1002-6819.2008.08.055
CUI J, XU Z G, DI X R. Applications and prospects of light emitting diode in plant protected culture. Transactions of the Chinese Society of Agricultural Engineering, 2008, 131(8): 249-253. doi: 10.3321/j.issn:1002-6819.2008.08.055
|
[9] |
查凌雁. LED红蓝光连续光照调控生菜抗坏血酸代谢的机理研究. 北京: 中国农业科学院博士学位论文, 2020.
ZHA L Y. Regulation mechanisms of Ascorbate metabolism in lettuce by continuous light of red and blue LEDs. PhD Thesis. Beijing: Chinese Academy of Agricultural Sciences, 2020.
|
[10] |
崔佳维. 植物工厂内日光总量对番茄和黄瓜育苗的影响. 广州: 华南农业大学硕士学位论文, 2018.
CUI J W. Effect of daily light integral on seedling of tomato and cucumber in plant factory. Master Thesis. Guangzhou: South China Agricultural University, 2018.
|
[11] |
康晨茜. LED光质对黄瓜与番茄幼苗的生理及形态建成的影响研究. 北京: 中国农业科学院硕士学位论文, 2021.
KANG C Q. Effect of LED light spectra on physiology and morphogenesis traits in cucumber and tomato seedlings. Master Thesis. Beijing: Chinese Academy of Agricultural Sciences, 2021.
|
[12] |
陈地杰, 韩烈保, 宋桂龙, 陈雨峰. 不同LED光质对两种冷季型草坪草生长及生理特性的影响. 草业科学, 2019, 36(11): 2831-2837.
CHEN D J, HAN L B, SONG G L, CHEN Y F. Effect of different ratio of red and blue light emitting diodes on growth and physiological characteristics of two cool-season turfgrass. Pratacultural Science, 2019, 36(11): 2831-2837.
|
[13] |
李邦耀, 李建设, 高艳明, 李芮. LED红蓝光对不同品种水培生菜的影响效果对比. 中国农业气象, 2021, 42(11): 918-928. doi: 10.3969/j.issn.1000-6362.2021.11.003
LI B Y, LI J S, GAO Y M, LI R. Comparison of the effects on different varieties of hydroponic lettuce exerted by led red and blue light. Chinese Journal of Agrometeorology, 2021, 42(11): 918-928. doi: 10.3969/j.issn.1000-6362.2021.11.003
|
[14] |
周璇. 光照时长与光照强度对叶用莴苣生长及生理特性的影响. 泰安: 山东农业大学硕士学位论文, 2022.
ZHOU X. Effects of lighting duration and intensity on growth and physiological characteristics of leaf lettuce. Master Thesis. Taian: Shandong Agricultural University, 2022.
|
[15] |
任作利, 王振华, 张继峯, 杨文杰, 陈潇洁, 贾哲诚. 弱光胁迫对滴灌玉米叶绿素荧光及生长特性的影响. 玉米科学, 2020, 28(4): 96-104.
REN Z L, WANG Z H, ZHANG J F, YANG W J, CHEN X J, JIA Z C. Effects of weak light stress on chlorophyll fluorescence and growth characteristics of drip-irrigated maize. Journal of Maize Sciences, 2020, 28(4): 96-104.
|
[16] |
季方, 甘佩典, 刘男, 贺冬仙, 杨珀. LED光质和日累积光照量对番茄种苗生长及能量利用效率的影响. 农业工程学报, 2020, 36(22): 231-238. doi: 10.11975/j.issn.1002-6819.2020.22.026
JI F, GAN P D, LIU N, HE D X, YANG P. Effects of LED spectrum and daily light integral on growth and energy use efficiency of tomato seedlings. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(22): 231-238. doi: 10.11975/j.issn.1002-6819.2020.22.026
|
[17] |
齐振宇, 胡玉屏, 蔡溧聪, 董桑婕, 喻景权, 周艳虹. 发光二极管日积累光照量对辣椒、黄瓜和生菜幼苗生长的影响. 浙江大学学报(农业与生命科学版), 2022, 48(2): 141-153.
QI Z Y, HU Y P, CAI L C, DONG S J, YU J Q, ZHOU Y H. Effects of daily light integrals of light emitting diode on the growth of pepper, cucumber and lettuce seedlings. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(2): 141-153.
|
[18] |
肖国增, 滕珂, 李林洁, 晁跃辉, 韩烈保. 盐胁迫下匍匐翦股颖抗氧化酶活性及基因表达机制研究. 草业学报, 2016, 25(9): 74-82. doi: 10.11686/cyxb2016107
XIAO G Z, TENG K, LI L J, CHAO Y H, HAN L B. Antioxidant enzyme activity and gene expression in creeping bentgrass under salt stress. Acta Prataculturae Sinica, 2016, 25(9): 74-82. doi: 10.11686/cyxb2016107
|
[19] |
段梦琪, 彭春, 张睿, 高娅楠, 李丽菁, 张智韦, 许立新. 乙烯利对干旱条件下多年生黑麦草生理指标的影响. 草地学报, 2021, 29(2): 333-341.
DUAN M Q, PENG C, ZHANG R, GAO Y N, LI L J, ZHANG Z W, XU L X. Effects of ethephon on physiological indexes of perennial ryegrass under drought conditions. Acta Agrestia Sinica, 2021, 29(2): 333-341.
|
[20] |
朱蕊. 盐碱胁迫对柳枝稷(Panicum virgatum L.)的生长生理影响研究. 北京: 北京林业大学硕士学位论文, 2021.
ZHU R. Effects of saline alkali stress on growth physiology of switchgrass (Panicum virgatum L.). Master Thesis. Beijing: Beijing Forestry University, 2021.
|
[21] |
奇凤. 践踏处理对高羊茅(Festuca arundinacea)和草地早熟禾(Poa pratensis L.)分蘖生长影响及生理调控研究. 北京: 北京林业大学硕士学位论文, 2012.
QI F. Study on the effects of traffic stress on the tillering and physiological regulation of tall fescue (Festuca arundinacea) and kentucky bluegrass (Poa pratensis L.). Master Thesis. Beijing: Beijing Forestry University, 2012.
|
[22] |
李丽艳,谭海霞, 李婧, 王连龙, 杜迎辉, 徐志文. 耐盐促生芽孢杆菌的筛选及其对盐胁迫下燕麦生长的影响. 浙江农业学报, 2022, 34(6): 1268-1276.
LI L Y, TAN H X, LI J, WANG L L, DU Y H, XU Z W. Screening of salt-tolerant growth-promoting Bacillus strains and their effect on oat growth under salt stress. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1268-1276.
|
[23] |
许岳飞, 金晶炜, 陈浩, 呼天明, 何学青, 周禾. 草坪植物耐弱光机理研究进展. 草地学报, 2011, 19(6): 1064-1069.
XU Y F, JIN J W, CHEN H, HU T M, HE X Q, ZHOU H. Physiological mechanism of turfgrass shadow tolerance. Acta Agrestia Sinica, 2011, 19(6): 1064-1069.
|
[24] |
ZHENG J F, JI F, HE D X, NIU G H. Effect of light intensity on rooting and growth of hydroponic strawberry runner plants in a led plant factory. Agronomy, 2019, 9(12): 875. doi: 10.3390/agronomy9120875
|
[25] |
刘茜. 高羊茅耐荫的生理机制及其转录组学分析. 杨凌: 西北农林科技大学硕士学位论文, 2021.
LIU X. Study on the physiological mechanism and transcription analysis of tall fescue tolerance to low light stress. Master Thesis. Yangling: Northwest A & F University, 2021.
|
[26] |
杨娟, 王志勇, 郭海林, 丁西朋, 杨虎彪, 吴杨, 廖丽. 光强对耐荫差异普通钝叶草(Stenotaphrum helferi)种质的形态与生理差异分析. 热带作物学报, 2020, 41(12): 2454-2461. doi: 10.3969/j.issn.1000-2561.2020.12.012
YANG J, WANG Z Y, GUO H L, DING X P, YANG H B, WU Y, LIAO L. Effects on different shading intensity on the morphology and physiology of Stenotaphrum helferi accessions with significant differences in shade tolerance. Chinese Journal of Tropical Crops, 2020, 41(12): 2454-2461. doi: 10.3969/j.issn.1000-2561.2020.12.012
|
[27] |
陆海洋, 刘晓英, 司聪聪, 焦学磊, 徐志刚. 不同光密度对不结球白菜的生长与品质的影响. 植物生理学报, 2015, 51(6): 909-915.
LU H Y, LIU X Y, SI C C, JIAO X L, XU Z G. Effects of different PPFD on growth and quality of non-heading Chinese cabbages. Plant Physiology Journal, 2015, 51(6): 909-915.
|
[28] |
袁华玲, 齐璐璐, 王文娟, 王超群. 光照强度对对萼猕猴桃试管苗生长及抗氧化酶活性的影响. 安徽农学通报, 2022, 28(5): 51-53. doi: 10.3969/j.issn.1007-7731.2022.05.013
YUAN H L, QI L L, WANG W J, WANG C Q. Effects of light intensity on the growth and antioxidant enzyme activities of plantlets in vitro of Actinidia valvata Dun. Anhui Agricultural Science Bulletin, 2022, 28(5): 51-53. doi: 10.3969/j.issn.1007-7731.2022.05.013
|
[29] |
任旭妍, 张婵, 张亚, 苏玉静, 张涛, 孙凯乐, 孙治强. 不同红蓝LED光照强度对紫叶生菜生长及营养品质的影响. 华北农学报, 2019, 34(6): 89-96. doi: 10.7668/hbnxb.20190484
REN X Y, ZHANG C, ZHANG Y, SU Y J, ZHANG T, SUN K L, SUN Z Q. Effects of different red and blue led light intensities on the growth and nutritional quality of purple leaf lettuce. Acta Agriculturae Boreali-Sinica, 2019, 34(6): 89-96. doi: 10.7668/hbnxb.20190484
|
[30] |
刘晓英, 焦学磊, 徐志刚, 常涛涛. 不同红蓝LED光照强度对樱桃番茄幼苗生长和抗氧化酶活性的影响. 南京农业大学学报, 2015, 38(5): 772-779. doi: 10.7685/j.issn.1000-2030.2015.05.011
LIU X Y, JIAO X L, XU Z G, CHANG T T. Effects of different red and blue LED light intensity on growth and antioxidant enzyme activity of cherry tomato seedlings. Journal of Nanjing Agricultural University, 2015, 38(5): 772-779. doi: 10.7685/j.issn.1000-2030.2015.05.011
|
[31] |
王萌, 王政, 何松林, 刘伟超, 宋盈龙. 光照强度对菊花试管苗生长和抗氧化酶活性的影响. 西北农林科技大学学报(自然科学版), 2020, 48(11): 71-76.
WANG M, WANG Z, HE S L, LIU W C, SONG Y L. Effect of light intensity on growth and antioxidant enzyme activities of Chrysanthemum morifolium in vitro. Journal of Northwest Agriculture and Forestry University (Natural Science Edition), 2020, 48(11): 71-76.
|
[32] |
闫征南, 贺冬仙, 钮根花, 周清, 曲英华. 白红与红蓝LED光照环境对两种生菜生长、品质和能量利用效率的影响. 农业工程技术, 2020, 40(25): 40-46.
YAN Z N, HE D X, NIU G H, ZHOU Q, QU Y H. Growth, nutritional quality, and energy use efficiency in two lettuce cultivars as influenced by white plus red versus red plus blue LEDs. Agricultural Engineering Technology, 2020, 40(25): 40-46.
|
[33] |
PENNISI G, PISTILLO A, ORSINI F, CELLINI A, SPINELLI F, NICOLA S, FERNANDEZ J A, CREPALDI A, GIANQUINTO G, MARCELIS L F M. Optimal light intensity for sustainable water and energy use in indoor cultivation of lettuce and basil under red and blue LEDs. Scientia Horticulturae, 2020, 272: 109508. doi: 10.1016/j.scienta.2020.109508
|