After the initial discovery of perennial ryegrass and tall fescue lead poisoning of farm animals, the responsible endophytic fungi in the grass was identified; further study confirmed the presence of endophytic fungi not only led to livestock poisoning, but significantly improved the competitive ability of the host in the community. The ecological and physiological functions of grass endophytic fungi have established this field as a popular research topic worldwide, which has provided opportunities for the development of endophytic fungi detection technology. Generally, well-established detection methods for pathogenic fungi have been used for the detection grass endophytic fungi, such as microscopic detection with staining. However, the accuracy of results was easily influenced by different host species, phenophases, and tissues. The rapid development and application of molecular biology, genetics, enzyme linked immunosorbent assay (ELISA), polymerase chain reaction (PCR), real-time PCR methods, and other modern molecular techniques has enabled the continuous improvement of the detection methods of endophytic fungi, which can compensate for the shortage of traditional methods. The rapid and efficient determination of the existence, distribution, classification, and position of the endophytic fungi, requires an accurate and reasonable selection of specific detection methods, such as qualitative or quantitative detection combined with classical microscopy staining to determine the endophytic fungi. In this paper, we reported recent research on the detection methods of endophytic fungi and also discuss the development of classical detection method of other microbes, which are important for the development of specific detection technologies for endophytic fungi and can quantitatively determine the existence and the activity of endophytic fungi. Specific endophytic fungi detection technologies, which are no longer limited to only the identification of the presence of endophytic fungi, but can simultaneous quantify the activity of endophytic fungi detection, are an important focus for the technological development.
Schardl CL, LeuchtmannA, Spiering MJ. Symbioses of grasses with seedborne fungal endophytes. , 2004, 55(55): 315-340. [本文引用:1]
[2]
LeuchtmannA, Bacon CW, Schardl CL, White JF, TadychM. Nomenclatural realignment of Neotyphodium species with genus Epichloё. , 2014, 106(2): 202-215. [本文引用:3]
[3]
MoyM, BelangerF, DuncanR, FreehoffA, LearyC, MeyerW, SullivanR, White JF. Identification of epiphyllous mycelial nets on leaves of grasses infected by clavicipitaceous endophytes. , 2000, 28(4): 291-302. [本文引用:1]
[4]
Li CJ, Gao JH, Nan ZB. Interactions of Neotyphodium gansuense, Achnatherum inebrians, and plant-pathogenic fungi. , 2007, 111(10): 1220-1227. [本文引用:1]
[5]
Bacon CW, Richardson MD, White JF. Modification and uses of endophyte-enhanced turfgrasses: A role for molecular technology. , 1997, 37(37): 1415-1425. [本文引用:2]
[6]
West CP, Gwinn KD. , 1993: 11-30. [本文引用:1]
[7]
Zhou LY, Li CJ, Zhang XX, JohnsonR, Bao GS, YaoX, ChaiQ. Effects of cold shocked Epichloё infected Festuca sinensis on ergot alkaloid accumulation. , 2015, 14: 99-104. [本文引用:1]
[8]
Song ML, ChaiQ, Li XZ, YaoX, Li CJ, Christensen MJ, Nan ZB. An asexual Epichloё endophyte modifies the nutrient stoichiometry of wild barley ( Hordeum brevisubulatum) under salt stress. , 2015, 387(1): 153-165. [本文引用:1]
[9]
Song ML, Li XZ, SaikkonenK, Li CJ, Nan ZB. An asexual Epichloё endophyte enhances waterlogging tolerance of Hordeum brevisubulatum. , 2015, 13: 44-52. [本文引用:1]
[10]
Zhang XX, Li CJ, Nan ZB. Effects of cadmium stress on growth and anti-oxidative systems in Achnatherum inebrians symbiotic with Neotyphodium gansuense. , 2010, 175(1-3): 703-709. [本文引用:1]
[11]
Joost RE. Acremonium in fescue and ryegrass: boon or bane? A review. , 1995, 73(3): 881-888. [本文引用:1]
[12]
Malinowski DP, Belesky DP. Adaptations of endophyte-infected cool-season grasses to environmental stresses: Mechanisms of drought and mineral stress tolerance. , 2000, 40(4): 923-940. [本文引用:1]
[13]
张蕊思, 安沙舟, 卡斯达尔·努尔旦别克, 施宠. 高温处理对披碱草种子内生真菌的杀灭效果及发芽活力的影响. , 2016, 33(9): 1651-1657. Zhang RS, An SZ, Kasidaer·Nuerdanbieke, Shi C. Effect of temperature treatments on viability of Epichloё seed of Eymus dahuricus. , 2016, 33(9): 1651-1657. (in Chinese)[本文引用:1]
[14]
ClayK, HolahJ. Fungal endophyte symbiosis and plant diversity in successional fields. , 1999, 285: 1742-1744. [本文引用:1]
[15]
Hill NS, Belesky DP, Stringer WC. Competitiveness of tall fescue as influenced by Acremonium coenophialum. , 1991, 31(1): 185-190. [本文引用:1]
[16]
赵晓静. 禾草内生真菌显微结构及其检测方法的研究. , 2015. Zhao XJ. Studies on detecting methods and miscrostructure of Epichloё endophytes of grasses. Master Thesis. , 2015. (in Chinese)[本文引用:5]
[17]
南志标, 李春杰. 禾草―内生真菌共生体在草地农业系统中的作用. , 2004, 24(3): 605-616. Nan ZB, Li CJ. Roles of the grass- Neotyphodium association in pastoral agriculture systems. , 2004, 24(3): 605-616. (in Chinese)[本文引用:3]
[18]
Glenn AE, Bacon CW, PriceR, Hanlin RT. Molecular phylogeny of Acremonium and its taxonomic implications. , 1996, 88: 369-383. [本文引用:2]
[19]
Christensen MJ, Latch G C M. Variation among isolates of Acremonium endophytes ( A. coenophialum and possibly A. typhinum) from tall fescue ( Festuca arundinacea). , 1991, 95(9): 1123-1126. [本文引用:2]
[20]
金文进, 李春杰, 王正凤. 禾草内生真菌的多样性及意义. , 2015, 24(1): 168-175. Jin WJ, Li CJ, Wang ZF. Research advances on diversity of grass Epichloё endophytes. , 2015, 24(1): 168-175. (in Chinese)[本文引用:1]
[21]
Schardl CL. The epichloae, symbionts of the grass subfamily Poöideae. , 2010, 97(4): 646-665. [本文引用:1]
[22]
White JF. Widespread distribution of endophytes in the Poaceae. , 1987, 71(4): 340-342. [本文引用:2]
[23]
陈泰祥, 李春杰, 李秀璋. 一株野大麦内生真菌的生物学与生理学特性. , 2016, 33(9): 1658-1664. Chen TX, Li CJ, Li XZ. Biological and physiological characteristics of Epichloё bromicola endophyte symbiotic with Hordeum brevisubulatum. , 2016, 33(9): 1658-1664. (in Chinese)[本文引用:1]
[24]
White JF, Morgan JG, Morrow AC. Taxonomy, life cycle, reproduction and detection of Acremonium endophytes. Agriculture, , 1993, 44(1-4): 13-37. [本文引用:1]
[25]
Christensen MJ, Latch G C M, Tapper B. Variation within isolates of Acremonium endophytes from perennial rye-grasses. , 1991, 95(8): 918-923. [本文引用:1]
[26]
魏宇昆, 高玉葆. 禾草内生真菌的遗传多样性及其共生关系. , 2008, 32(2): 512-520. Wei YK, Gao YB. Review of the diversity of endophyte genetics and symbiotic interactions with grasses. , 2008, 32(2): 512-520. (in Chinese)[本文引用:1]
[27]
Philipson MN. Ultrastructure of a symptomless fungal endophyte of Festuca arundinacea. , 1991, 152(3): 296-303. [本文引用:2]
[28]
Musgrave DR. Detection of an endophytic fungus of Lolium perenne using enzyme-linked immunosorbent assay(ELISA). , 1984, 27(2): 283-288. [本文引用:1]
[29]
WangL, LiaoF, Huang GM, Liu YT, Lou JF, ZhouQ. Double-colored real-time fluorescence PCR method for detection of Neotyphodium gansuense from drunken horse grass ( Achnatherum inebrians). , 2011, 19(5): 973-980. [本文引用:1]
[30]
ClayK, Jones JP. Transmission of Atkinsonella hypoxylon (Clavicipitaceae) by cleistogamous seed of Danthonia spicata (Gramineae). , 1984, 62(12): 2893-2895. [本文引用:1]
[31]
Harvey IC, Fletcher LR, Emms LM. Effects of several fungicides on the Lolium endophyte in ryegrass plants, seeds, and in culture. , 1982, 25(4): 601-606. [本文引用:1]
[32]
Funk CR. An endophytic fungus and resistance to sod webworms: Association in Lolium perenne. , 1983, 1(2): 189-191. [本文引用:1]
Neill JC. The endophyte of Rye-Grass ( Lolium perenne). , 1940, 21(5): 280-291. [本文引用:1]
[35]
SampsonK. The systemic infection of grasses by Epichloe typhina (Pers. ) Tul. , 1933, 18(1): 30-47. [本文引用:1]
[36]
Saha DC, Jackson MA, Johnson Cicalese J M. A rapid staining method for detection of endophytic fungi in turf and forage grasses. , 1988, 78(2): 237-239. [本文引用:1]
[37]
Clark EM, White JF, Patterson RM. Improved histochemical techniques for the detection of Acremonium coenophialum in tall fescue and methods of in vitro culture of the fungus. , 1983, 1(3): 149-155. [本文引用:1]
[38]
李春杰, 南志标, 刘勇, Paul VH, DapprichP. 醉马草内生真菌检测方法的研究. 中国植物病理学会2008年学术年会论文集. 北京: 中国农业科学技术出版社, 2008. Li CJ, Nan JB, LiuY, Paul VH, DapprichP. Beijing: China Agricultural Science & Technology Press, 2008. (in Chinese)[本文引用:1]
[39]
赵晓静, 王萍, 李秀璋, 古丽君, 李春杰. 内生真菌在禾草体内的分布特征. , 2015, 32(8): 1206-1215. Zhao XJ, WangP, Li XZ, Gu LJ, Li CJ. Distribution characteristics of Epichloё endophyte ingramineous grasses. , 2015, 32(8): 1206-1215. (in Chinese)[本文引用:1]
[40]
Franklin MT, Goodey JB. A cotton blue-lactophenol technique for mounting plant-parasitic nematodes. , 1949, 23(3-4): 175-178. [本文引用:1]
[41]
Gusmão K AG, Gurgel L VA, Melo T MS, Gil LF. Adsorption studies of methylene blue and gentian violet on sugarcane bagasse modified with EDTA dianhydride (EDTAD) in aqueous solutions: Kinetic and equilibrium aspects. , 2013, 118(2): 135-143. [本文引用:1]
[42]
BadieeP, NejabatM, AlborziA, KeshavarzF, ShakibaE. Comparative study of gram stain, potassium hydroxide smear, culture and nested PCR in the diagnosis of fungal keratitis. , 2010, 44(4): 251-256. [本文引用:1]
[43]
Kim JR, MichielsenS. Photodynamic antifungal activities of nanostructured fabrics grafted with rose bengal and phloxine B against Aspergillus fumigatus. , 2015, 132(26): 42216. [本文引用:1]
[44]
VinuthM, Bhojya Naik H S, Vinoda B M, Pradeepa S M, Arun K G, Chand ra S K. Rapid removal of hazardous rose bengal dye using Fe(Ⅲ) Montmorillonite as an effective adsorbent in aqueous solution. , 2016, 6(2): 355. [本文引用:1]
[45]
EmtiaziG, SatariiM, MazaherionF. The utilization of aniline, chlorinated aniline, and aniline blue as the only source of nitrogen by fungi in water. , 2001, 35(5): 1219-1224. [本文引用:2]
[46]
AdamG, DuncanH. Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. , 2001, 33(7-8): 943-951. [本文引用:1]
[47]
Christensen MJ, Bennett RJ, Ansari HA, KogaH, Johnson RD, Bryan GT, Simpson WR, Koolaard JP, Nickless EM, Voisey CR. Epichloё endophytes grow by intercalary hyphal extension in elongating grass leaves. , 2008, 45(2): 84-93. [本文引用:1]
[48]
Christensen MJ, Ball O J P Bennett R J, Schardl C L. Fungal and host genotype effects on compatibility and vascular colonization by Epichloё festucae. , 1997, 101(4): 493-501. [本文引用:1]
[49]
Smith KT, Bacon CW, Luttrell ES. Reciprocal translocation of carbohydrates between host and fungus in bahiagrass infected with atramentosa. , 1985, 75(4): 407-411. [本文引用:1]
[50]
纪燕玲, 孙相辉, 王志伟. 禾本科植物内生真菌研究11: 黄山景区禾本科植物内生真菌的检测与分布. , 2011, 34(1): 147-150. Ji YL, Sun XH, Wang ZW. A survey of the gramineous plant endophytes in Huangshan Geopark. , 2011, 34(1): 147-150. (in Chinese)[本文引用:1]
[51]
柳莉, 李秀璋, 郭长辉, 李春杰. 不同培养基对禾草内生真菌 Epichloё 生长与产孢的影响. , 2015, 32(6): 859-869. LiuL, Li XZ, Guo CH, Li CJ. Effects of different medium on growth and sporulation of asexual stage of Epichloё endophytes. , 2015, 32(6): 859-869. (in Chinese)[本文引用:1]
[52]
张玉平. 披碱草——内生真菌共生体生物学与生理学特性的研究. , 2007. Zhang YP. Biological and physiological characteristics of Elymus dahuricus— Neotyphodium endophyte symbiont. PhD Thesis. , 2007. (in Chinese)[本文引用:1]
[53]
刘德海, 郝益民, 岳丹丹, 马焕, 权淑静, 丁冉冉, 陈国参. 一株产 β-葡萄糖苷酶菌株的筛选及酶学性质研究. , 2013, 32(6): 47-60. Liu DH, Hao YM, Yue DD, MaH, Quan SJ, Ding RR, Chen GC. Isolation of a strain with β-glucosidase and its enzymatic propertie. , 2013, 32(6): 47-60. (in Chinese)[本文引用:1]
[54]
刘德海, 马焕, 解复红, 权淑静, 贾彬, 王红云, 陈国参. 一株产β-葡萄糖苷酶烟曲霉菌株的鉴定及其产酶特性. , 2015, 34(6): 118-122. Liu DH, MaH, Xie FH, Quan SJ, JiaB, Wang HY, Chen GC. Identifcation of β-glucosidase proucing Aspergillus fumigatus and its eazyme production characteristics. , 2015, 34(6): 118-122. (in Chinese)[本文引用:1]
[55]
Musgrave DR, Grose TA, Latch G C M, Christensen M J. Purification and characterisation of the antigens of endophytic fungi isolated from Lolium perenne and Festuca arundinacea in New Zealand . , 1986, 29(1): 121-128. [本文引用:1]
[56]
詹漓晖, 纪燕玲, 于汉寿, 亢燕, 孙相辉, 王志伟. 禾本科植物内生真菌研究 8——中国部分地区拂子茅属植物 Neotyphodium 属内生真菌分布及形态学特征. , 2009, 26(1): 13-18. Zhan LH, Ji YL, Yu HS, KangY, Sun XH, Wang ZW. Grass endophyte researches 8—Distribution and morphological characteristics of Neotyphodium sp. grown in Calamagrostis spp. , 2009, 26(1): 13-18. (in Chinese)[本文引用:1]
[57]
White JF, Cole GT, Morgan-JonesG. Endophyte-host associations in forage grasses. Ⅵ. A new species of Acremonium isolated from Festuca arizonica. , 1987, 79(1): 148-152. [本文引用:1]
[58]
Li CJ, Nan ZB, Paul VH, Dapprich PD, LiuY. A new Neotyphodium species symbiotic with drunken horse grass( Achnatherum inebrians) in China. , 2004, 90(1): 141-147. [本文引用:1]
[59]
Musgrave DR, FletcherL R. Optimisation and characterisation of enzyme-linked immunosorbent assay (ELISA) for the detection of the Acremonium loliae endophyte in Lolium perenne. , 1986, 29(1): 117-120. [本文引用:1]
[60]
Hopkins AA, Young CA, Panaccione DG, Simpson WR, MittalS, Bouton JH. Agronomic performance and lamb health among several tall fescue novel endophyte combinations in the south-central usa. , 2010, 50(4): 1552-1561. [本文引用:1]
[61]
Johnstone LK, Mayhew IG, Fletcher LR. Clinical expression of lolitrem B (perennial ryegrass) intoxication in horses. , 2012, 44(3): 304-309. [本文引用:1]
[62]
Faville MJ, BriggsL, CaoM, KoulmanA, Jahufer M Z Z, Koolaard J, Hume D E. A QTL analysis of host plant effects on fungal endophyte biomass and alkaloid expression in perennial ryegrass. , 2014, 35(8): 1-18. [本文引用:1]
[63]
Hiatt Ⅲ EE, Hill NS. Neotyphodium coenophialum mycelial protein and herbage mass effects on ergot alkaloid concentration in tall fescue. , 1997, 23(12): 2721-2736. [本文引用:1]
[64]
Hiatt EE, Hill NS, Bouton JH, Mims CW. Monoclonal antibodies for detection of Neotyphodium coenophialum. , 1997, 37(4): 1265-1269. [本文引用:1]
[65]
Reddick BB, Collins MH. An improved method for detection of Acremonium coenophialum in tall fescue plants. , 1988, 78(4): 418-420. [本文引用:1]
[66]
Reddick BB. Detection of the tall fescue endophyte with emphasis on enzyme-linked immunosorbent assay. , 1988, 1(2): 133-136. [本文引用:1]
[67]
Johnson MC, Pirone TP, Siegel MR, Varney DR. Detection of Epichloe typhina in tall fescue by means of enzyme-linked immunosorbent assay. , 1982, 72(6): 647-650. [本文引用:1]
[68]
Gwinn KD, Collins-Shepard M H, Reddick B B. Tissue print-immunoblot, an accurate method for the detection of Acremonium coenophialum in tall fescue. , 1991, 81(7): 747-748. [本文引用:1]
[69]
Hiatt EE, Hill NS, Bouton JH, Stuedemann JA. Tall fescue endophyte detection: Commercial immunoblot test kit compared with microscopic analysis. , 1999, 39(3): 796-799. [本文引用:1]
Bazely DR, Ball JP, VicariM, Tanentzap AJ, BérengerM, RakocevicT, KohS. Broad-scale geographic patterns in the distribution of vertically-transmitted, asexual endophytes in four naturally-occurring grasses in Sweden. , 2007, 30(3): 367-374. [本文引用:1]
[72]
GranathG, VicariM, Bazely DR, Ball JP, PuentesA, RakocevicT. Variation in the abundance of fungal endophytes in fescue grasses along altitudinal and grazing gradients. , 2007, 30(3): 422-430. [本文引用:1]
[73]
Saha MC, Young CA, Hopkins AA. Genetic variation within and among wildrye (and ) populations from the southern great plains. , 2009, 49(3): 913-922. [本文引用:1]
[74]
PuentesA, Bazely DR, Huss-DanellK. Endophytic fungi in Festuca pratensis grown in Swedish agricultural grassland s with different managements. , 2007, 44(1-3): 121-126. [本文引用:1]
[75]
SwarthoutD, HarperE, JuddS, GonthierD, ShyneR, StoweT, BultmanT. Measures of leaf-level water-use efficiency in drought stressed endophyte infected and non-infected tall fescue grasses. , 2009, 66(1): 88-93. [本文引用:1]
[76]
ClayK, HolahJ, Rudgers JA. Herbivores cause a rapid increase in hereditary symbiosis and alter plant community composition. , 2005, 102(35): 12465-12470. [本文引用:1]
[77]
ZuestT, Haerri SA, Mueller CB. Endophytic fungi decrease available resources for the aphid Rhopalosiphum padi and impair their ability to induce defences against predators. , 2008, 33(1): 80-85. [本文引用:1]
[78]
Saona NM, Albrectsen BR, EricsonL, Bazely DR. Environmental stresses mediate endophyte-grass interactions in a boreal archipelago. , 2010, 98(2): 470-479. [本文引用:1]
[79]
PorterJ. Analysis of endophyte toxins: Fescue and other grasses toxic to livestock. , 1995, 73(3): 871-880. [本文引用:1]
[80]
高嘉卉, 南志标. 禾草内生真菌生物碱的研究进展. , 2007, 27(6): 2531-2546. Gao JH, Nan ZB. A review of bioprotective alkaloids of grass-fungal endophyte symbioses. , 2007, 27(6): 2531-2546. (in Chinese)[本文引用:1]
[81]
Siegel MR, Latch G C M, Bush L P, Fannin F F, Rowan D D, Tapper B A, Bacon C W, Johnson M C. Fungal endophyte-infected grasses: alkaloid accumulation and aphid response. , 1990, 16(12): 3301-3315. [本文引用:1]
[82]
周芳, 高玉葆. 内生真菌-禾草共生体内生物碱的种类及其生理生态作用. , 2003, 9(6): 669-673. ZhouF, Gao YB. Types of alkaloids in fungal endophyte-grass symbiont and their ecophysiological role. , 2003, 9(6): 669-673. (in Chinese)[本文引用:1]
[83]
Schardl CL, Young CA, Faulkner JR, FloreaS, PanJ. Chemotypic diversity of Epichloae, fungal symbionts of grasses. , 2012, 5(3): 331-344. [本文引用:1]
[84]
Schardl CL, Young CA, PanJ, FloreaS, Takach JE, Panaccione DG, Farman ML, Webb JS, JaromczykJ, Charlton ND, NagabhyruP, ChenL, ShiC, LeuchtmannA. Currencies of mutualisms: Sources of alkaloid genes in vertically transmitted epichloae. , 2013, 5(6): 1064-1088. [本文引用:1]
[85]
GuerreP. Ergot alkaloids produced by endophytic fungi of the genus Epichloё . , 2015, 7(3): 773-790. [本文引用:1]
[86]
Schardl CL, FloreaS, PanJ, NagabhyruP, BecS, Calie PJ. The epichloae: Alkaloid diversity and roles in symbiosis with grasses. , 2013, 16(4): 480-488. [本文引用:1]
[87]
Song QY, Nan ZB, Gao K Song H, Tian P, Zhang X X, Li C J, Xu W B, Li X Z. Antifungal, phytotoxic, and cytotoxic activities of metabolites from Epichloe bromicola, a fungus obtained from Elymus tangutorum grass. , 2015, 63(40): 8787-8792. [本文引用:2]
[88]
Dimenna ME, Mortimer PH, Prestidge RA, Hawkes AD, Sprosen JM. Lolitrem b concentrations, counts of Acremonium lolii hyphae, and the incidence of ryegrass staggers in lambs on plots of A. lolii-infected perennial ryegrass. , 1992, 35(2): 211-217. [本文引用:1]
[89]
Turner KE, West CP, Piper EL, Mashburn SA, Moubarak AS. Quality and ergovaline content of tall fescue silage as affected by harvest stage and addition of poultry litter and inoculum. , 1993, 6(3): 423-427. [本文引用:1]
[90]
Tepaske MR, Powell RG, Clement SL. Analyses of selected endophyte-infected grasses for the presence of loline-type and ergot-type alkaloids. , 1993, 41(12): 2299-2303. [本文引用:1]
[91]
Perellino NC, MalyszkoJ, BallabioM, GioiaB, MinghettiA. Identification of ergobine, a new natural peptide ergot alkaloid. , 1993, 56(4): 489-493. [本文引用:1]
[92]
Porter JK. Analysis of endophyte toxins: Fescue and other grasses toxic to livestock. , 1995, 73(3): 871-80. [本文引用:1]
[93]
Hiatt E EI, Hill NS. Neotyphodium coenophialum mycelial protein and herbage mass effects on ergot alkaloid concentration in tall fescue. , 1997, 23(12): 2721-2736. [本文引用:1]
[94]
Parrott WA. , 1994: 37-46. [本文引用:1]
[95]
MukherjeeJ, MengeM, HoischenD, GrammelN, WinterfeldtE. Development of a tryptophan auxotrophic mutant of claviceps purpurea, 1029 N5 and its preliminary application in the synthesis of new ergot alkaloids. , 2002, 22(3-4): 411-415. [本文引用:1]
[96]
Faeth SH, Bush LP, Sullivan TJ. Peramine alkaloid variation in neotyphodium-infected arizona fescue: Effects of endophyte and host genotype and environment. , 2002, 28(8): 1511. [本文引用:1]
[97]
Tapper BA. Detection and measurement of the alkaloid peramine in endophyte-infected grasses. , 1989, 463: 133-138. [本文引用:1]
[98]
Belesky DP, Plattner RD. Influence of endophyte and water regime upon tall fescue accessions. Ⅱ. Pyrrolizidine and ergopeptine alkaloids. , 1989, 64(3): 11-28. [本文引用:1]
[99]
FuchsB, KrischkeM, Mueller MJ, KraussJ. Peramine and lolitrem B from endophyte-grass associations cascade up the food chain. , 2013, 39(11): 1385-1389. [本文引用:1]
[100]
Porter JK. Analysis of endophyte toxins: Fescue and other grasses toxic to livestock. , 1995, 73(3): 871-880. [本文引用:1]
[101]
Riedell WE, Kieckhefer RE, Petroski RJ, Powell RG. Naturally-occurring and synthetic loline alkaloid derivatives insect feeding behavior modification and toxicity. , 1991, 3(1): 122-129. [本文引用:1]
[102]
Rogers WM, Roberts CA, Andrae JG, Davis DK, Rottinghaus GE, Hill NS, Kallenbach RL, Spiers DE. Seasonal fluctuation of ergovaline and total ergot alkaloid concentrations in tall fescue regrowth. , 2011, 51(3): 1291. [本文引用:1]
[103]
ThamheslM, Apfelthaler E Kunzvekiru E, Schwartzzimmerman H E, Krska R, Kneifel W, Schatzmayr G, Moll W D. Rhodococcus erythropolis MTHt3 biotransforms ergopeptines to lysergic acid. , 2015, 15(1): 73. [本文引用:1]
[104]
Ayers AW, Hill NS, Rottinghaus GE, Stuedemann JA, Thompson FN, PurintonP T, Seman D H, Dawe D L, Parks A H, Ensley D. Ruminal metabolism and transport of tall fescue ergot alkaloids. , 2009, 49(6): 2309-2316. [本文引用:1]
[105]
Schultz CL, Lodgeivey SL, Bush LP, Craig AM, Strickland JR. Effects of initial and extended exposure to an endophyte-infected tall fescue seed diet on faecal and urinary excretion of ergovaline and lysergic acid in mature geldings. , 2006, 54(4): 178-84. [本文引用:1]
[106]
CrewsC. Analysis of ergot alkaloids. , 2015, 7(6): 2024-2050. [本文引用:1]
[107]
Moyano AS, Lanuza AF, Torres BA, Cisternas AE, Fuentes VM. Implementation of a method to determine lolitrem-B in ryegrass ( Lolium perenne L. ) by liquid chromatography(HPLC). , 2009, 69(3): 455-459. [本文引用:1]
[108]
Najafabadi AM, Mofid MR, MohammadiR, MoghimS. Quantification of ergovaline using HPLC and mass spectrometry in Iranian neotyphodium infected tall fescue. , 2010, 5(2): 135-143. [本文引用:1]
[109]
Roberts CA, Benedict HR, Hill NS, KallenbachR, Rottinghaus GE. Determination of ergot alkaloid content in tall fescue by near-infrared spectroscopy. , 2010, 45(2): 778-783. [本文引用:1]
[110]
Takach JE, MittalS, Swoboda GA, Bright SK, Trammell MA, Hopkins AA, YoungC A. Genotypic and chemotypic diversity of Neotyphodium endophytes in tall fescue from Greece. , 2012, 78: 5501-5510. [本文引用:1]
[111]
Charlton ND, Craven KD, Afkhami ME, Hall BA, Ghimire SR, Young CA. Interspecific hybridization and bioactive alkaloid variation increases diversity in endophytic Epichloё species of Bromus laevipes. , 2014, 90(1): 276-289. [本文引用:1]
[112]
Takach JE, Young CA. Alkaloid genotype diversity of tall fescue endophytes. , 2014, 54(54): 667-678. [本文引用:1]
[113]
Young CA, Schardl CL, Panaccione DG, FloreaS, Takach JE, Charlton ND, MooreN, Webb JS, JaromczykJ. Genetics, genomics and evolution of ergot alkaloid diversity. , 2015, 7(4): 1273-1302. [本文引用:1]
[114]
Panaccione DG, Johnson RD, WangJ, Young CA, DamrongkoolP, ScottB, Schardl CL. Elimination of ergovaline from a grass- Neotyphodium endophyte symbiosis by genetic modification of the endophyte. , 2001, 98(22): 12820-12825. [本文引用:1]
[115]
陈丽. 醉马草内生真菌分子检测、基因型及产碱多样性的研究. , 2015. ChenL. Molecular detection, genotypes and chemotypes of Epichloё endophytes in Achnatherum inebrians. PhD Thesis. , 2015. (in Chinese)[本文引用:1]
[116]
Schardl CL, Young CA, HesseU, Amyotte SG, AndreevaK, Calie PJ, Fleetwood DJ, Haws DC, MooreN, OeserB, Panaccione DG, Schweri KK, Voisey CR, Farman ML, Jaromczyk JW, Roe BA, Sullivan DM, ScottB, TudzynskiP, AnZ, Arnaoudova EG, Bullock CT, Charlton ND, ChenL, CoxM, Dinkins RD, FloreaS, Glenn AE, Gordon AG, GüldenerU, Harris DR, HollinW, JaromczykJ, Johnson RD, Khan AK, LeistnerE, LeuchtmannA, LiC, LiuJ, LiuM, MaceW, MachadoC, NagabhyruP, PanJ, SchmidJ, SugawaraK, SteinerU, Takach JE, TanakaE, Webb JS, Wilson EV, Wiseman JL, YoshidaR, ZengZ. Plant-symbiotic fungi as chemical engineers: Multi-genome analysis of the clavicipitaceae reveals dynamics of alkaloid loci. , 2013, 9(2): e1003323. [本文引用:2]
[117]
Glenn AE, Bacon CW. Molecular phylogeny of Acremonium and its taxonomic implications. , 1996, 88(3): 369-383. [本文引用:1]
[118]
White TJ, Bruns TD, Lee SB, AylorJ. 38-Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR-Protocols: A Guide to Methods and , 1990, 38: 315-322. [本文引用:1]
[119]
Moon CD, Miles CO, JärlforsU, Schardl CL. The evolutionary origins of three new Neotyphodium endophyte species from grasses indigenous to the Southern Hemisphere. , 2002, 94(4): 694-711. [本文引用:1]
[120]
MoyM, Li HM, SullivanR, White JF, Belanger FC. Endophytic fungal β-1, 6-glucanase expression in the infected host grass. , 2002, 130(3): 1298-1308. [本文引用:1]
[121]
Van Z D J E, Guthridge KM, Spangenberg GC, Forster JW. Sequence analysis of ssr-flanking regions identifies genome affinities between pasture grass fungal endophyte taxa. , 2011, 11(3): 921312. [本文引用:1]
[122]
Van Z d J E, Dobrowolski MP, Bannan NR, Stewart AV, Smith KF, Spangenberg GC, Forstewr JW. Global genetic diversity of the perennial ryegrass fungal endophyte Neotyphodium lolii. , 2008, 48(4): 1487-1501. [本文引用:1]
[123]
Jong E V Z D, Guthridge KM, Spangenberg GC, Forster JW. Development and characterization of EST-derived simple sequence repeat (SSR) markers for pasture grass endophytes. , 2003, 46(2): 277-290. [本文引用:1]
[124]
KatldeenG, ThomasB. PCR assay based on a microsatellite-containing locus for detection and quantification of Epichloё endophytes in grass tissue. , 1997, 63(4): 1543-1550. [本文引用:1]
[125]
Garza JC, SlatkinM, Freimer NB. Microsatellite allele frequencies in humans and chimpanzees, with implications for constraints on allele size. , 1995, 12(4): 594-603. [本文引用:1]
[126]
Spiering MJ, Moon CD, Wilkinson HH, Schardl CL. Gene clusters for insecticidal loline alkaloids in the grass-endophytic fungus Neotyphodium uncinatum. , 2005, 169(3): 1403-1414. [本文引用:1]
[127]
Soliman SS, Trobacher CP, RongT, Greenwood JS, Raizada MN. A fungal endophyte induces transcription of genes encoding a redundant fungicide pathway in its host plant. , 2013: 13(1): 1-10. [本文引用:1]
[128]
SarkarA, ReinholdhurekB. Transcriptional profiling of nitrogen fixation and the role of NifA in the diazotrophic endophyte Azoarcus sp. strain BH72. , 2014, 9(2): e86527. [本文引用:1]
[129]
黄国明, 廖芳, 刘跃庭, 崔铁军, 罗加凤. 苇状羊茅内生真菌与多年生黑麦草内生真菌实时荧光PCR检测研究. , 2007, 26(2): 257-265. Huang GM, LiaoF, Liu YQ, Cui TJ, Luo JF. Detection of Neotyphodium coenophialum and N. lolli based on real-time fluorescence PCR. , 2007, 26(2): 257-265. (in Chinese)[本文引用:1]
[130]
TianP, Le TN, Ludlow EJ, Smith KF, Forster JW, Guthridge KM, Spangenberg GC. Characterisation of novel perennial ryegrass host- Neotyphodium endophyte associations. , 2013, 64(7): 716-725. [本文引用:1]
[131]
Liu YG, MitsukawaN, OosumiT, Whittier RF. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. , 1995, 8(3): 457-463. [本文引用:1]
[132]
Wille PA, Aeschbacher RA, BollerT. Distribution of fungal endophyte genotypes in doubly infected host grasses. , 1999, 18(4): 349-358. [本文引用:1]
[133]
GroppeK, Sand ersI, WiemkenA, BollerT. A microsatellite marker for studying the ecology and diversity of fungal endophytes ( Epichloё spp. ) in grasses. , 1995, 61(11): 3943-3949. [本文引用:1]
[134]
MaY, RajkumarM, ZhangC, RajkumarM, FreitasH. Beneficial role of bacterial endophytes in heavy metal phytoremediation. , 2016, 174: 14-25. [本文引用:1]
[135]
Lappalainen JH, Yli-MattilaT. Genetic diversity in Finland of the birch endophyte Gnomonia setacea as determined by RAPD-PCR markers. , 1999, 103(3): 328-332. [本文引用:1]
[136]
KoideK, OsonoT, TakedaH. Colonization and lignin decomposition of Camellia japonica, leaf litter by endophytic fungi. , 2005, 46(5): 280-286. [本文引用:1]
[137]
邓墨渊, 王伯初, 杨再昌, 王黎. 分子生物学技术在植物内生菌分类鉴定中的应用. , 2006, 28(3): 9-14. Deng MY, Wang BC, Yang ZC, WangL. The application of techniques of molecular biology in classification and identification of endophytes. , 2006, 28(3): 9-14. (in Chinese)[本文引用:1]
[138]
Ekanayake PN, RabinovichM, Guthridge KM, Spangenberg GC, Forster JW, Sawbridge JI. Phylogenomics of fescue grass-derived fungal endophytes based on selected nuclear genes and the mitochondrial gene complement. , 2013, 13(1): 270. [本文引用:1]
[139]
Hettiarachchige IK, Ekanayake PN, Mann RC, Guthridge KM, Sawbridge TL, Spangenberg GC, Forster JW. Phylogenomics of asexual Epichloё fungal endophytes forming associations with perennial ryegrass. , 2015, 15(1): 72-86. [本文引用:1]
[140]
张波. 线粒体细胞色 b和翻译延伸因子基因分析用于病原真菌的分类、鉴定和系统发生. , 2007. ZhangB. Identification, classification, and phylogenetic relationships of pathogenic fungi based on mitochondrial cytochrome b gene and translation elongation factor geneanalysis. PhD Thesis. , 2007. (in Chinese)[本文引用:1]
[141]
胡娜, 徐玲. 真菌毒素检测方法研究进展. , 2007, 28(8): 563-565. HuN, XuL. Development of detection methods of mycotoxin. , 2007, 28(8): 563-565. (in Chinese)[本文引用:1]
[142]
王莹. 同时检测多种真菌毒素的生物芯片技术研究. , 2012. WangY. Study on biochip technology for simultaneous detection of multiplex mycotoxins. Master Thesis. , 2012. [本文引用:1]
[143]
RichterL, StepperC, MakA, ReinthalerA, HeerR, KastM, BrücklH, ErtlP. Development of a microfluidic biochip for online monitoring of fungal biofilm dynamics. , 2007, 7(12): 1723-1731. [本文引用:1]
纪燕玲, 孙相辉, 王志伟. 禾本科植物内生真菌研究11: 黄山景区禾本科植物内生真菌的检测与分布. , 2011, 34(1): 147-150. Ji YL, Sun XH, Wang ZW. A survey of the gramineous plant endophytes in Huangshan Geopark. , 2011, 34(1): 147-150. (in Chinese)