张伟珍, 古丽君, 段廷玉. AM真菌提高植物抗逆性的机制. 草业科学, 2018,35(3): 491-507
Zhang Wei-zhen, Gu Li-jun, Duan Ting-yu. Research progress on the mechanism of AM fungi for improving plant stress resistance. Pratacultural Science, 2018,35(3): 491-507.
Research progress on the mechanism of AM fungi for improving plant stress resistance
Zhang Wei-zhen, Gu Li-jun, Duan Ting-yu
State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, Gansu, China
Arbuscular mycorrhizae (AM) fungi could increase plant resistance to biotic and abiotic stresses.AM fungi could improve plant resistance to abiotic stresses, including drought, high or low temperature, heavy metal, and salt. The mechanism includes improving plant nutrient absorption, the accumulation of osmotic adjustment substances and activities of antioxidative enzymes, strengthening the effects of osmotic adjustment and maintaining the balance of plant hormones, and increasing auxin synthesis, and regulating carbon and nitrogen metabolism. AM fungi could also induce plant defense gene expression and enhance the capacity of plant roots and mycelium to hold heavy metal. The mechanism of AM fungi for defense against plant disease and insects may include building the mycelium network that can form mechanical barriers for the pathogen that is invading, enhancing the activities of resistance-related enzymes, synthesizing secondary metabolites associated with disease and insect resistance, promoting the expression of genes related to diseases and pests, and transmission by mycelium of the signal of insect resistance defense to improve the insect resistance of adjacent plants. We summarize the effects of AM fungi on plant stress resistance and the mechanisms found both at home and abroad in recent years.
Smith SE, Read D J. MycorrhizalSymbiosis. New York: Academic Press, 2010. [本文引用:1]
[2]
Sawers R JH, Svane SF, QuanC, GrønlundM, WozniakB, Gebreselassie MN, González-MuñozE, Chávez Montes RA, BaxterI, GoudetJ, JakobsenI, PaszkowskiU. Phosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of root-external hyphae and the accumulation of transcripts encoding PHT1 phosphate transporters. , 2017, 214(2): 632-643. [本文引用:1]
[3]
郭艳娥, 李芳, 李应德, 段廷玉. AM真菌促进植物吸收利用磷元素的机制. , 2016, 33(12): 2379-2390. Guo YE, LiF, Li YD, Duan TY. Progress in the elucidation of the mechanisms of arbuscular mycorrhizal fungi in promotion of phosphorus uptake and utilization by plants. , 2016, 33(12): 2379-2390. (in Chinese)[本文引用:1]
[4]
ZhangW, Chen XX, Liu YM, Liu DY, Chen XP, Zou CQ. Zinc uptake by roots and accumulation in maize plants as affected by phosphorus application and arbuscular mycorrhizal colonization. , 2017, 413(1/2): 59-71. [本文引用:1]
[5]
TianH, Yuan XL, Duan JF, Li WH, Zhai BN, Gao YJ. Influence of nutrient signals and carbon allocation on the expression of phosphate and nitrogen transporter genes in winter wheat ( Triticum aestivum L. ) roots colonized by arbuscular mycorrhizal fungi. , 2017, 12(2): e0172154. [本文引用:1]
[6]
Zhang HQ, Wei SZ, Hu WT, Xiao LM, TangM. Arbuscular mycorrhizal fungus Rhizophagus irregularis increased potassium content and expression of genes encoding potassium channels in Lycium barbarum. Frontiers in , 2017, 8: 440. [本文引用:1]
[7]
LeyvalC, TurnauK, Haselwand terK. Effect of heavy metal pollution on mycorrhizal colonization and function: Physiological, ecological and applied aspects. , 1997, 7(3): 139-153. [本文引用:1]
[8]
Augé RM. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. , 2001, 11(1): 3-42. [本文引用:1]
[9]
齐国辉, 杨文利, 张林平, 李宪涛, 高素娜. 丛枝菌根真菌对君迁子贮藏营养及抗冻性的影响. , 2005, 28(1): 62-64. Qi GH, Yang WL, Zhang LP, Li XT, Gao SN. Effects of arbuscular mycorrhizal fungi on storage nutrient and cold resistance of Diospyros lotus L. , 2005, 28(1): 62-64. (in Chinese)[本文引用:3]
[10]
LiuZ, LiY, WangJ, HeX, TianC. Different respiration metabolism between mycorrhizal and non-mycorrhizal rice under low-temperature stress: A cry for help from the host. , 2015, 153(4): 602-614. [本文引用:3]
[11]
GargN, Pand eyR. Effectiveness of native and exotic arbuscular mycorrhizal fungi on nutrient uptake and ion homeostasis in salt-stressed Cajanus cajan L. (Millsp. ) genotypes. , 2015, 25(3): 165-180. [本文引用:1]
[12]
GalliU, SchüeppH, BrunoldC. Heavy metal binding by mycorrhizal fungi. , 1994, 92(2): 364-368. [本文引用:1]
[13]
Morand iD, GollotteA, CamporotaP. Influence of an arbuscular mycorrhizal fungus on the interaction of a binucleate Rhizoctonia species with Myc+ and Myc- pea roots. , 2002, 12(2): 97-102. [本文引用:1]
[14]
Gange AC, Smith AK. Arbuscular mycorrhizal fungi influence visitation rates of pollinating insects. , 2005, 30(5): 600-606. [本文引用:2]
[15]
Van der Heijden M G A, Boller TW, Sand ersR. Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. , 1998, 79(6): 2082-2091. [本文引用:1]
[16]
Ehrenfeld JG, RavitB, ElgersmaK. Feedback in the plant-soil system. , 2005, 30(1): 75-115. [本文引用:1]
[17]
LinG, McCormack M L, Ma C, Guo D. Similar below-ground carbon cycling dynamics but contrasting modes of nitrogen cycling between arbuscular mycorrhizal and ectomycorrhizal forests. , 2017, 213(3): 1440-1451. [本文引用:1]
[18]
王贤波. 丛枝菌根( AM)的研究进展及展望. , 2007(2): 19-21. Wang XB. Research progress and prospects of arbuscular mycorrhizae(AM). , 2007(2): 19-21. (in Chinese)[本文引用:1]
[19]
GuiH, HydeK, Xu JC, MortimerP. Arbuscular mycorrhiza enhance the rate of litter decomposition while inhibiting soil microbial community development. , 2017, 7(7): 42184. [本文引用:1]
[20]
王立, 贾文奇, 马放, 李世阳, 张淑娟. 菌根技术在环境修复领域中的应用及展望. , 2010, 19(2): 487-493. WangL, Jia WQ, MaF, Li SY, Zhang SJ. Mycorrhizal technology application and prospects in the field of environmental remediation. , 2010, 19(2): 487-493. (in Chinese)[本文引用:1]
[21]
ZhangT, SunY, Shi ZY, FengG. Arbuscular mycorrhizal fungi can accelerate the restoration of degraded spring grassland in Central Asia. , 2012, 65(4): 426-432. [本文引用:1]
Ciais PH, ReichsteinM, ViovyN, GranierA, OgéeJ, AllardV, AubinetM, BuchmannN, BernhoferC, CarraraA, Chevallier F, de Noblet N, Friend A D, Friedllingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival J M, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana J F, Sanz M J, Schulze E D, Vesala T, Valentini R. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. , 2005, 437: 529-533. [本文引用:2]
[24]
Qian YB, JiangJ, Wu ZN. Soil heterogeneity and its impact on ecological distribution of plant community in the aiby lake area. , 2003, 26(3): 217-222. [本文引用:1]
[25]
李芳, 高萍, 段廷玉. AM菌根真菌对非生物逆境的响应及其机制. , 2016, 24(3): 491-500. LiF, GaoP, Duan TY. Response and mechanism of arbuscular mycorrhizal fungi to abiotic stress. , 2016, 24(3): 491-500. (in Chinese)[本文引用:1]
[26]
任爱天, 鲁为华, 马春晖, 杨洁晶. 接种AM真菌对紫花苜蓿抗旱性的影响. , 2014, 51(9): 1677-1685. Ren AT, Lu WH, Ma CH, Yang JJ. Effect of arbuscular mycorrhiza fungi on drought tolerance of Medicago sativa L. , 2014, 51(9): 1677-1685. (in Chinese)[本文引用:1]
[27]
张海涵. 黄土高原枸杞根际微生态特征及其共生真菌调控寄主生长与耐旱响应机制. , 2011. Zhang HH. Micro-ecosystem associated with the rhizosphere of Lycium barbarum from the loess plateau and the mechanism of symbiotic fungal inoculation on the host plant growth and drought resistance. PhD Thesis. , 2011. (in Chinese)[本文引用:1]
[28]
贺学礼, 高露, 赵丽莉. 水分胁迫下丛枝菌根AM真菌对民勤绢蒿生长与抗旱性的影响. , 2011, 31(4): 1029-1037. He XL, GaoL, Zhao LL. Effects of AM fungi on the growth and drought resistance of Seriphidium minchünense under water stress. , 2011, 31(4): 1029-1037. (in Chinese)[本文引用:1]
[29]
赵平娟, 安锋, 唐明. 丛枝菌根真菌对连翘幼苗抗旱性的影响. , 2007, 27(2): 396-399. Zhao PJ, AnF, TangM. Effects of arbuscular mycorrhiza fungi on drought resistance of Forsythia suspensa. , 2007, 27(2): 396-399. (in Chinese)[本文引用:1]
[30]
ZézéA, Brou YC, MeddichA, MartyF. Molecular identification of MIP genes expressed in the roots of an arbuscular mycorrhizal Trifolium alexand rium L. under water stress. , 2008, 3(1): 78-83. [本文引用:1]
[31]
ArocaR, del Mar AlguacilM, VernieriP, Ruiz-Lozano JM. Plant responses to drought stress and exogenous ABA application are modulated differently by mycorrhization in tomato and an ABA-deficient mutant (sitiens). , 2008, 56(4): 704-719. [本文引用:2]
[32]
Ruiz-Lozano JM, PorcelR, ArocaR. Does the enhanced tolerance of arbuscular mycorrhizal plants to water deficit involve modulation of droughtinduced plant genes?, 2006, 171(4): 693-698. [本文引用:1]
[33]
陈婕, 谢靖, 唐明. 水分胁迫下丛枝菌根真菌对紫穗槐生长和抗旱性的影响. , 2014, 36(6): 142-148. ChenJ, XieJ, TangM. Effects of arbuscular mycorrhizal fungi on the growth and drought resistance of Amorpha fruticosa under water stress. , 2014, 36(6): 142-148. (in Chinese)[本文引用:1]
[34]
黄志. 丛枝菌根真菌对甜瓜抗旱性的生理效应及分子机制的研究. , 2010. HuangZ. Studies on the physiological effect and mechanisms of arbuscular mycorrhizal fungi (AMF) in drought resistance of Melon. PhD Thesis. , 2010. (in Chinese)[本文引用:1]
[35]
Ruiz-Lozano JM, del Mar AlguacilM, BárzanaG, VernieriP, ArocaR. Exogenous ABA accentuates the differences in root hydraulic properties between mycorrhizal and non mycorrhizal maize plants through regulation of PIP aquaporins. , 2009, 70(5): 565-579. [本文引用:1]
[36]
张华. AM真菌对小叶锦鸡儿和蒙古扁桃生长、抗旱性及总黄酮含量的影响. , 2013. ZhangH. The effects of AM fungi on growth, drought resistance and total flavonoids content of Caragana microphylla Lam. and Amygdalus mongolica Maxim. Master Thesis. , 2013. (in Chinese)[本文引用:1]
[37]
GoicoecheaN, MerinoS, Sánchez-DíazM. Arbuscular mycorrhizal fungi can contribute to maintain antioxidant and carbon metabolism in nodules of Anthyllis cytisoides L. subjected to drought. , 2005, 162(1): 27-35. [本文引用:1]
[38]
Subramanian KS, SanthanakrishnanP, BalasubramanianP. Responses of field grown tomato plants to arbuscular mycorrhizal fungal colonization under varying intensities of drought stress. , 2006, 107(3): 245-253. [本文引用:1]
[39]
QinX, Zeevaart J A D. The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean. , 1999, 96(26): 15354-15361. [本文引用:1]
[40]
Rillig MC, Wright SF, Eviner VT. The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: Comparing effects of five plant species. , 2002, 238(2): 325-333. [本文引用:1]
[41]
JiangW, GouG, DingY. Influences of arbuscular mycorrhizal fungi on growth and mineral element absorption of chenglu hybrid bamboo seedlings. , 2013, 45(1): 303-310. [本文引用:1]
[42]
潘传威, 刘小芳, 屈鹏飞, 吴强盛. 丛枝菌根真菌提高温度胁迫下枳根系抗氧化能力. , 2011, 8(9): 245-247. Pan CW, Liu XF, Qu PF, Wu QS. Arbuscular mycorrhizal fungi increased antioxidant capacity of Poncirus trifoliata roots under temperature stress. , 2011, 8(9): 245-247. (in Chinese)[本文引用:2]
[43]
陈笑莹, 宋凤斌, 朱先灿, 刘胜群, 柏会子. 高温胁迫下丛枝菌根真菌对玉米光合特性的影响. , 2013, 28(2): 108-113. Chen XY, Song FB, Zhu XC, Liu SQ, Bai HZ. Effects of arbuscular mycorrhizal fungi on photosynthetic characteristics in maize plants under high temperature stress. , 2013, 28(2): 108-113. (in Chinese)[本文引用:2]
[44]
Zhu XC, Song FB, Liu SQ, Liu TD. Effects of arbuscular mycorrhizal fungus on photosynthesis and water status of maize under high temperature stress. , 2011, 346(1/2): 189-199. [本文引用:3]
[45]
陈笑莹. 低温胁迫下丛枝菌根真菌对玉米碳氮代谢的影响. , 2014. Chen XY. Effects of arbuscular mycorrhizal fungi on carbon and nitrogen metabolism of maize under low temperature stress. PhD Thesis. Changchun: , 2014. (in Chinese)[本文引用:3]
[46]
Zhu XC, Song FB, Liu FL, Liu SQ, Tian CJ. Carbon and nitrogen metabolism in arbuscular mycorrhizal maize plants under low-temperature stress. , 2015, 66(1): 62-70. [本文引用:1]
[47]
韩冰, 贺超兴, 闫妍, 郭世荣, 于贤昌. AMF对低温胁迫下黄瓜幼苗生长和叶片氧化系统的影响. , 2011, 44(8): 1646-1653. HanB, He CX, YanY, Guo SR, Yu XC. Effects of arbuscular mycorrhiza fungi on seedlings growth and antioxidant systems of leaves in cucumber under low temperature stress. , 2011, 44(8): 1646-1653. (in Chinese)[本文引用:1]
[48]
LiuA, ChenS, ChangR, LiuD, ChenH, Ahammed GJ, LinX, HeC. Arbuscular mycorrhizae improve low temperature tolerance in cucumber via alterations in H2O2 accumulation and ATPase activity. , 2014, 127(6): 775-785. [本文引用:2]
[49]
ChenS, JinW, LiuA, ZhangS, LiuD, WangF, LinX, HeC. Arbuscular mycorrhizal fungi (AMF) increase growth and secondary metabolism in cucumber subjected to low temperature stress. , 2013, 160: 222-229. [本文引用:2]
[50]
李思龙, 张玉刚, 陈丹明, 马健, 郭绍霞. 丛枝菌根对高温胁迫下牡丹生理生化的影响. , 2009, 25(7): 154-157. Li SL, Zhang YG, Chen DM, MaJ, Guo SX. Effect of arbuscular mycorrhizal fungi on physiology and biochemistry of tree peony under high temperature stress. , 2009, 25(7): 154-157. (in Chinese)[本文引用:1]
[51]
孔佩佩. 丛枝菌根真菌对切花月季和切花菊生长及温度胁迫耐受性的影响. , 2011. Kong PP. Effects of arbuscular mycorrhizal fungi on growth and temperature tolerance of Rosa nybrid and Chrysanthemum morifolium. Master Thesis. , 2011. (in Chinese)[本文引用:2]
[52]
杨劲松. 中国盐渍土研究的发展历程与展望. , 2008, 45(5): 837-845. Yang JS. Development history and prospect of research on saline soil in China. , 2008, 45(5): 837-845. (in Chinese)[本文引用:1]
[53]
PorcelR, ArocaR, Ruiz-LozanoJ. Salinity stress alleviation using arbuscular mycorrhizal fungi: A review. , 2012, 32(1): 181-200. [本文引用:1]
[54]
王红新. 丛枝菌根真菌在植物修复重金属污染土壤中的作用. , 2010(5): 1-5. Wang HX. Arbuscular mycorrhizal fungi’s role in the phytoremediation of soils contaminated by heavy metals. , 2010(5): 1-5. (in Chinese)[本文引用:1]
[55]
OuziadF, WildeP, SchmelzerE, Hildebrand tU, BotheH. Analysis of expression of aquaporins and Na+/H+ transporters in tomato colonized by arbuscular mycorrhizal fungi and affected by salt stress. , 2006, 57(1/2): 177-186. [本文引用:2]
[56]
张瑞萍. 水稻质膜质子泵基因对低磷胁迫的响应和丛枝菌根的影响. , 2011. Zhang RP. Adaptation to Pi deficiency and effects to mycorrhiza of the rice plasma membrane H+- ATPase genes. PhD Thesis. , 2011. (in Chinese)[本文引用:2]
[57]
刘双洋. 丛枝菌根真菌对水稻镉胁迫响应及其转运过程的影响研究. , 2015. Liu SY. The research on response to cadmium stress and transport process of rice under infection of arbuscular mycorrhizal fungi. Master Thesis. , 2015. (in Chinese)[本文引用:3]
[58]
杨海霞, 刘润进, 郭绍霞. AM真菌摩西球囊霉对盐胁迫条件下高羊茅生长特性的影响. , 2014, 23(4): 195-203. Yang HX, Liu RJ, Guo SX. Effects of arbuscular mycorrhizal fungi Glomus mosseae on growth characteristics of Festuca arundinacea under salt stress. , 2014, 23(4): 195-203. (in Chinese)[本文引用:3]
[59]
李霞, 彭霞薇, 伍松林, 李志茹, 冯红梅, 江泽平. 丛枝菌根对翅荚木生长及吸收累积重金属的影响. , 2014, 35(8): 3142-3148. LiX, Peng XW, Wu SL, Li ZR, Feng HM, Jiang ZP. Effect of arbuscular mycorrhizae on growth, heavy metal uptake and accumulation of Zenia insignis chun seedlings. , 2014, 35(8): 3142-3148. (in Chinese)[本文引用:2]
[60]
黄晶, 凌婉婷, 孙艳娣, 刘娟. 丛枝菌根真菌对紫花苜蓿吸收土壤中镉和锌的影响. , 2012, 31(1): 99-105. HuangJ, Ling WT, Sun YD, LiuJ. Impacts of arbuscular mycorrhizal fungi inoculation on the uptake of cadmium and zinc by alfalfa in contaminated soil. Journal of Agro-environmental , 2012, 31(1): 99-105. (in Chinese)[本文引用:1]
[61]
MoradiA, YounesiO. Influence of arbuscular mycorrhiza on membrane lipid peroxidation and soluble sugar content of soybean under salt stress. , 2015, 79(4): 227-232. [本文引用:2]
[62]
He ZQ, HuangZ. Expression analysis of LeNHX1 gene in mycorrhizal tomato under salt stress. , 2013, 51(1): 100-104. [本文引用:1]
[63]
周权男, 杨礼富, 王真辉. 砷胁迫对丛枝菌根接种玉米叶片蛋白表达谱的影响. , 2014, 27(6): 2370-2373. Zhou QN, Yang LF, Wang ZH. Effect of arsenic stress on protein expression profiles from maize leaves of abuscular mycorrhizal fungi (AMF) inoculation. , 2014, 27(6): 2370-2373. (in Chinese)[本文引用:2]
[64]
Lin JX, Wang YN, Sun SN, Mu CS, Yan XF. Effects of arbuscular mycorrhizal fungi on the growth, photosynthesis and photosynthetic pigments of Leymus chinensis seedlings under salt-alkali stress and nitrogen deposition. , 2017, 576: 234-241. [本文引用:2]
[65]
EvelinH, KapoorR, GiriB. Arbuscular mycorrhizal fungi in alleviation of salt stress: A review. , 2009, 104(7): 1263-1280. [本文引用:1]
[66]
林双双, 孙向伟, 王晓娟, 李媛媛, 罗巧玉, 孙莉, 金樑. AM真菌提高寄主植物耐受重金属胁迫的生理机制. , 2013, 30(3): 365-374. Lin SS, Sun XW, Wang XJ, Li YY, Luo QY, SunL, JinL. Mechanisms of AM fungi to increase physiological tolerance to heavy metal of host plant. , 2013, 30(3): 365-374. (in Chinese)[本文引用:1]
[67]
南志标, 李春杰, 白原生. . 北京: 海洋出版社, 2003. Nan ZB, Li CJ, Bai YS. Beijing: China Ocean Press, 2003. (in Chinese)[本文引用:1]
[68]
张峰, 段廷玉, 闫飞扬, 李芳. 丛枝菌根真菌与根际微生物的互作. , 2014, 31(9): 1673-1685. ZhangF, Duan TY, Yan FY, LiF. Advances in the interactions of arbuscular mycorrhizal fungi and rhizosphere microorganism. , 2014, 31(9): 1673-1685. (in Chinese)[本文引用:1]
[69]
王倡宪. AM真菌对设施黄瓜幼苗生长及抗枯萎病能力研究. , 2005. Wang CX. Studies on effects of AMF on growth and resistance of cucumber seedlings to wilt disease under protected conditions. PhD Thesis. , 2005. (in Chinese)[本文引用:2]
[70]
李敏. AM真菌对西瓜抗枯萎病的效应及其机制. , 2005. LinM. Effects of AM fungi on resistance to Fusarium wilt in watermelon ( Citrullus lanatus) and related mechanism. PhD Thesis. , 2005. (in Chinese)[本文引用:3]
[71]
Safir GR. The Influence of vesicular-arbuscular mycorrhiza on the resistance on onion to Pyrenochaeta terrestris. Master Thesis. , 1968. [本文引用:1]
[72]
Maya MA, MatsubaraY. Tolerance to Fusarium wilt and anthracnose diseases and changes of antioxidative activity in mycorrhizal cyclamen. , 2013, 47: 41-48. [本文引用:1]
[73]
Martínez-MedinaA, RoldánA, Pascual JA. Interaction between arbuscular mycorrhizal fungi and Trichoderma harzianum under conventional and low input fertilization field condition in melon crops: Growth response and Fusarium wilt biocontrol. , 2011, 47(2): 98-105. [本文引用:1]
[74]
KloppholzS, KuhnH, RequenaN. A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy. , 2011, 21(14): 1204-1209. [本文引用:1]
[75]
朱红惠, 姚青, 羊宋贞. AM真菌与拮抗细菌的互作及对番茄根系酚类物质的影响. , 2003, 24(3): 20-23. Zhu HH, YaoQ, Yang SZ. Interaction between AM fungus and antagonistic bacterium and its effect on tomato root phenolic compounds. , 2003, 24(3): 20-23. (in Chinese)[本文引用:1]
[76]
盛萍萍, 王彬, 苑学霞, 王小坤, 刘润进. AM真菌诱导的番茄信号物质及其对根结线虫的抑制效应. , 2012, 42(3): 323-327. Sheng PP, WangB, Yuan XX, Wang XK, Liu RJ. Physiological effect of signal substances in tomato plants induced by arbuscular mycorrhizal fungi. , 2012, 42(3): 323-327. (in Chinese)[本文引用:3]
[77]
李海燕, 刘润进, 束怀瑞. 丛枝菌根真菌与大豆胞囊线虫相互作用研究初报. , 2002, 32(4): 356-360. Li HY, Liu RJ, Shu HR. A preliminary report on interactions between arbuscular mycorrhizal fungi and soybean cyst nematode. , 2002, 32(4): 356-360. (in Chinese)[本文引用:3]
[78]
陈书霞, 姜永华, 刘宏久, 程智慧. AM真菌和根结线虫互作对黄瓜生长及生理特征的影响. , 2012, 39(3): 253-259. Chen SX, Jiang YH, Liu HJ, Chen ZH. Interaction between AM fungi and root-knot nematodes cucumber growth and the effect for physiological characteristics. , 2012, 39(3): 253-259. (in Chinese)[本文引用:2]
[79]
BanuelosJ, TrejoD, AlarconA, LaraL, MoreiraC, CruzS. The reduction in proline buildup in mycorrhizal plants affected by nematodes. , 2012, 12(2): 263-270. [本文引用:2]
[80]
Merrild MP, AmbusP, RosendahlS, JakobsenL. Common arbuscular mycorrhizal networks amplify competition for phosphorus between seedlings and established plants. , 2013, 200(1): 229-240. [本文引用:1]
[81]
Hardham AR, Mitchell HJ. Use of molecular cytology to study the structure and biology of phytopathogenic and mycorrhizal fungi. , 1998, 24(1): 252-284. [本文引用:1]
[82]
OrtuG, BalestriniR, Pereira PA, Becker JD, KüsterH, BonfanteP. Plant genes related to gibberellin biosynthesis and signaling are differentially regulated during the early stages of AM fungal interactions. , 2012, 5(4): 951-954. [本文引用:1]
[83]
FiorilliV, CatoniM, FranciaD, CardinaleF, LanfrancoL. The arbuscular mycorrhizal symbiosis reduces disease severity in tomato plants infected by Botrytis cinerea. , 2011, 93(1): 237-242. [本文引用:1]
[84]
Abbott LK, Robson AD. The role of vesicular arbuscular mycorrhizal fungi in agriculture and the selection of fungi for inoculation. , 1982, 33(2): 389-408. [本文引用:1]
[85]
Thompson JP, Wildermuth GB. Colonization of crop and pasture species with vesicular-arbuscular mycorrhizal fungi and a negative correlation with root infection by Bipolaris sorokiniana. , 1989, 67(3): 687-693. [本文引用:1]
[86]
Pozo MJ, CordierC, Dumas-GaudotE, GianinazziS, Barea JM, Azcon-AguilarC. Localized versus systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. , 2002, 53: 525-534. [本文引用:1]
[87]
Cameron DD, Neal A L, van Wees S C M, Ton J. Mycorrhiza-induced resistance: more than the sum of its parts?, 2013, 18(10): 539-545. [本文引用:1]
Ruiz-Lozano JM, RousselH, GianinazziS, Gianinazzi-PearsonV. Defense genes are differentially induced by a mycorrhizal fungus and Rhizobium sp. in wild-type and symbiosis-defective pea genotypes. , 1999, 12(11): 976-984. [本文引用:1]
[90]
Pozo MJ, Azcón-AguilarC, Dumas-GaudotE, Barea JM. β-1, 3-glucanase activities in tomato roots inoculated with arbuscular mycorrhizal fungi and /or phytophthora parasitica and their possible involvement in bioprotection. , 1999, 141(2): 149-157. [本文引用:1]
[91]
Gao LL, Smith FA, Smith SE. The rmc locus does not affect plant interactions or defence-related gene expression when tomato ( Solanum lycopersicum) is infected with the root fungal parasite, Rhizoctonia. , 2006, 33(3): 289-296. [本文引用:1]
[92]
Gao LL, KnoggeW, DelpG, Smith FA, Smith SE. Expression patterns of defense-related genes in different types of arbuscular mycorrhizal development in wild-type and mycorrhiza-defective mutant tomato. , 2004, 17(10): 1103-1113. [本文引用:1]
刘月华, 钟梦莹, 武瑞鑫, 位晓婷, 潘多, 邵新庆. AM真菌介导垂穗披碱草抗虫作用研究. , 2016, 24(3): 604-609. Liu YH, Zhong MY, Wu RX, Wei XT, PanD, Shao XX. Study of the inductive effect of arbuscular mycorrhizal fungi on Elymus nutans pest-resistant information. , 2016, 24(3): 604-609. (in Chinese)[本文引用:3]
[95]
Gange AC, West HM. Interactions between arbuscular mycorrhizal fungi and foliar-feeding insects in Plantago lanceolata L. , 1994, 128(1): 79-87. [本文引用:1]
[96]
Barber NA. Arbuscular mycorrhizal fungi are necessary for the induced response to herbivores by Cucumis sativus. , 2013, 6(2): 171-176. [本文引用:1]
[97]
Xie LJ, Song YY, Zeng RS, Wang RL, Wei XC, YeM, HuL, ZhangH. Disease resistance signal transfer between roots of different tomato plants through common arbuscular mycorrhiza networks. , 2012, 23(5): 1145-1152. [本文引用:3]
[98]
HempelS, SteinC, UnsickerS, RenkerC, AugeH, WeisserW, BuscotF. Specific bottom-up effects of arbuscular mycorrhizal fungi across a plant-herbivore-parasitoid system. , 2009, 160(2): 267-277. [本文引用:2]
[99]
Moon DC, BarnoutiJ, YoungingerB. Context-dependent effects of mycorrhizae on herbivore density and parasitism in a tritrophic coastal study system. , 2013, 38(1): 31-39. [本文引用:2]
[100]
NishidaT, IzumiN, KatayamaN, OhgushiT. Short-term response of arbuscular mycorrhizal association to spider mite herbivory. , 2009, 51(2): 329-334. [本文引用:1]
[101]
CosmeM, Stout MJ, WurstS. Effect of arbuscular mycorrhizal fungi ( Glomus intraradices) on the oviposition of rice water weevil ( Lissorhoptrus oryzophilus). , 2011, 21(7): 651. [本文引用:1]
[102]
Song YY, Zeng RS, Xu JF, LiJ, ShenX, Yihdego WG. Interplant communication of tomato plants through underground common mycorrhizal networks. , 2010, 5(10): e13324. [本文引用:1]
[103]
弓明钦, 陈应龙, 仲崇禄. . 北京: 中国林业出版社, 1997. Gong MQ, Chen YL, Zhong CL. Beijing: China Forestry Publishing House, 1997. (in Chinese)[本文引用:1]
[104]
Zhao PJ, AnF, Ding MM. Advances in the researches of the methanism of disease resistance promotion of mycorrhiza. , 2004, 19(1): 93-97. [本文引用:1]
[105]
TangM, ChenH, Shang H S H. Effects of arbuscular mycorrhizal fungi (AMF) on Hippophae rhamnoides drought resistance. , 1999, 35(3): 48-52. [本文引用:1]